小学数学与数学思想方法精选14篇
小学数学与数学思想方法1数学知识是数学思想方法的载体,思想方法是数学知识的进一步抽象概括,因而数学思想方法有一个特点,它并不像数学知识技能那样显而易见,往往是隐形的。
新教材注重贯彻四基目标,其中数学思想的编排主要体现在两个方面:
一是在数与代数、图形与几何、统计与概率、综合与实践这四个领域结合各部分知识体现各种数学思想;
二是每册教材单独设置“数学广角”单元,利用操作和直观等手段呈现重要的数学思想。
一、抽象思想和符号化思想
(1)从具体的情境和直观图中抽象出数学符号0~9,关系符号“=”“<”“>”运算符号“+”“-”等;并理解这些符号的含义。教材编排,让学生从具体到抽象,经历了符号化的过程,感受符号的简洁。同时这里还呈现了简单的象形统计图,让学生感受统计思想和一一对应思想。
(2)结合生活经验、数小棒、计数器等直观操作手段,经历十进制计数原理的抽象过程。
抽象思想存在于数学学习的全过程,虽然一年级的数学知识看起来很简单,但实际上也是充满了抽象。无论是数的认识还是计算,都离不开抽象的十进制计数原理;时间作为表示物质运动的始终过程或过程中的一点,充满了抽象;几何图形虽然比较直观,但从物体到图形也是一个抽象的过程。我们在教学十进制计数原理,10和9相比已有本质不同。
二、分类思想
分类思想的教学要抓住全面、有序地思考等特点,在低年级也可以渗透,具体内容和教学目标如下:
(1)结合认识物体,让学生感受分类思想。给各种形状的物体起个名称,实际上就是按照形状分类。
(2)结合数的组成,让学生感受分类思想的优势、有条理地思考的优越性。
三、归纳法
整理学过的20以内的进位加法算式,观察算式的特点,归纳出其中的规律。再根据发现规律就能够比较容易填写空格,有利于培养推理能力。
四、演绎推理思想
数学家张景中院士认为计算和推理是相通的,计算中有方法,方法里就体现了推理;推理是抽象的计算,计算时具体的推理。让学生感受推理思想,同时能够灵活地思考。推理本身具有逻辑性,但是要灵活地运用推理。
五、数学结合思想
(1)体会“形”的直观性。各种实物或图形作为各种直观工具帮助学生理解和掌握知识、解决问题,如借助直线认识数的顺序并计算,认识数的时候用小棒摆三角形、正方形、五边形、六边形等。
(2)了解可以用数来描述几何图形。各种图形的认识,课增加用数的量化来描述形。
六、函数思想
在加法算式中,一个加数不变,和随着另一个加数的变化而变化,在减法算式中,被减数不变,差随着减数的变化而变化,都可以渗透函数的思想。
思考:数学知识是数学思想方法的载体,思想方法是数学知识的进一步抽象概括,因而数学思想方法有一个特点,它并不像数学知识技能那样显而易见,往往是隐形的。我们教师在备课时,心里就要明确这些数学思想,那么在教学中才能有所体现。这也就需要我们老师加强解读文本的功底,而不在只是为教数学知识而教数学知识。
小学数学与数学思想方法2读王永春所著的《小学数学与思想方法》一书后,让我对数学学科中蕴含的数学思想有了一个系统的认识,书中对数学思想的归类总结,让我明白了数学思想的基本划分。书中列举的课本中的实例,更是我在教学中如何把握教学思想的一个重要参考。23年的教学经历,也让我对数学思想的重要性有了亲身的体会。
全书分为上篇和下篇两部分,上篇主要讲述与小学数学有关的数学思想方法,下篇是讲述义务教育人教版小学数学中的数学思想方法案例解读。全书的阅览,我更加觉得培养思维能力才是数学教学的核心目标。只有数学思想方法的教学才可以很好的培养学生的思维能力,并提高学生的解决问题的能力。
书中对有关极限的一些概念、教学要求和解题方法进行了详细的讲解。极限思想是用无限逼近的方式来研究数量的变化趋势的思想,这里抓住了两个关键语句:一个是变化的量是无穷多个,另一个是无限变化的量趋向于一个确定的常数,二者缺一不可。如自然数列是无限的,但是它趋向于无穷大,不趋向于一个确定的常数,因而自然数列没有极限。在教学中一方面要让学生体会无限,更重要的是通过具体案例让学生体会无限变化的量趋向于一个确定的常数。极限以及在此基础上定义的导数、定积分是解决用函数表达的现实问题的有力工具。有限与无限是辨证思维的一种体现,要辨证地看待二者的关系,不要用初等数学的“有限的”眼光看“无限的”问题,要用极限思想看无限,极限方法是一种处理无限变化的量的变化趋势的有力工具。换句话说,当我们面对无限的问题时,就不要再用有限的观点来思考,要进入无限的状态,数学上极限就是这么一个规则和逻辑,我们按照这个规则和逻辑去做就可以了。另外,对循环小数和无限不循环小数的理解和表示也体现了有限与无限的辩证关系。我们知道,在中学数学里一般用整数和分数来定义有理数,用无限不循环小数来定义无理数,有理数和无理数统称为实数。有理数包括整数、有限小数和循环小数。整数和有限小数化成分数是学生非常熟悉的,那么,循环小数怎样化成分数呢?我们以前曾经介绍过用方程的方法可以解决这一问题。下面我们再用极限的方法来解决。案例:把循环小数0.999…化成分数。分析:0.999…是一个循环小数,也就是说,它的小数部分的位数有限多个。对于小学生来说,能够接受的方法就是数形结合思想和极限思想的共同应用和渗透,通过构造一个直观地几何图形来描述极限思想。先看下面的数列0.9,0.09,0.009,…用数形结合的思想,把这个数列用线段构造如下:把一条长度是1的线段,先平均分成10份,取其中的9份;然后把剩下的1份再平均分成10份,取其中的9份……所有取走的线段的长度是0.9+0.09+0.009+…=0.999…如此无限的取下去,剩下的线段长度趋向于0,取走的长度趋向于1,根据极限思想,可得0.999…=1。对于教师而言,光有极限思想的渗透是不够的,还需要进一步理解如何用极限方法来解决。这是一个无穷比递缩数列的求和问题,根据公式可得0.9+0.09+0.009+…=0.9÷(1-0.1)=1所以0.999…=1。
总之,在自己教学实践的过程中联系学过的理论知识,用这些理论知识指导我们的教学。
小学数学与数学思想方法3一、积极研读数学教材,挖掘数学思想方法
小学数学教师在进行备课的时候,不仅要将数学知识进行重点分析,并且还要对数学教材进行仔细钻研,创造性的将数学教材发展为挖掘数学思想方法的主要载体。在课前备课的时候,小学数学教师要多问自己几个为什么,并且将教材内容积极转变为自己的教学思想,比如在学习用数对确定位置的一课的时候,数学教 ……此处隐藏13507个字……出27个相等的小立方体?
分析这个问题并不容易,一是三维空间对人的想象力要求比较高,二是各种切法情况比较复杂,难于一一分析。
我们不妨用类比的方法,先考虑一个二维情况下的类似问题:把一个正方形分成9个大小一样的小正方形,如果的切的时候不能调整,容易知道,要四刀。现在的问题是,如果可以调整,可以将切出的部分重叠后再切,可以少于四刀吗?
您去试一试就知道,这个问题还是不容易解决!
一不做,二不休,考虑一维情况下类似的题目:把一条线段平均分成三段,不能调整的话,两刀?如果能调整呢?情况如何?你很快可以发现,还是要两刀!怎么理解这种现象?您很快会找到中间那段,这段有两个端点,每个端点处总是要切一下的!
返回去想切正方形的事!也看中间那个正方形,它有四条边,不论你怎么切,每一刀总只能切一条边!于是4刀是最少的!
再看三维的情况:也考虑最中间的正方体。它有六个面,不论你怎么切,每刀最多切出一个面来,那么最少要六刀!
问题就这样解决了!
5.归纳思想
在研究一般性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。在解决数学问题时运用归纳思想,既可发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。
例7:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就是运用归纳的思想方法。
小学数学与数学思想方法13为什么我看这个数学思维方法几页就觉得很受益,有触动。因为以前自己数学能学好感觉只是天然的选择,下意识的动作,在这里能找到原理,让你的行为有理论依据,更加明晰思维方法的重要性。自己就是受益于这些思维方法,但却没意识到,看了书才恍然大悟。很多习以为常,想当然的事情明白了这样设计的道理了。比如为啥设计小学五年级六年级。为什么三四年级、初中一年级会是槛。区别主要是抽象能力的发展不同。思维在低年级作用不是特别大。差距显现不出来。从作者的言外之意也可以看到数学思维方法是最重要的东西,但却不是课堂教学的常态目标,只是教学的附属品,渗透出来的,有人悟性高,捕获的多,发展的好。有人不敏感,攫取的少。差距就出来了。
但不管从数学教育从业者还是我们个人的经历来说,数学思维方法都是最基本的。属于对数学本质的认识,理性的认识。
奥数就是为了训练数学思维方法啊。但是真假奥数不一样,假奥数就是教给你套路,记住就好。
我自己数学学习也是原发性的。没人指导,没人培训。不过有人指点肯定会更轻松,或者能更进一步。
我们常说语文学习,词汇是理解力的基础。在数学中,概念是数学学习的基础,是抽象思维的基础和基本形式。概念大概等同于中文阅读里的抽象词汇,不过概念是有相关系统的东西。说这个是为了说明我们平时说的打好基础再拓展。到底什么是基础。基础就是概念与概念之间的关系构成的知识结构。
所以也自然明白日常我们说的“拓展”是什么。拓展就是在理解概念之间关系的知识结构基础上,利用思想方法、模型思想、推理思想等学习数学,解决问题。
小学数学与数学思想方法14读完《小学数学与数学思想方法》这本书,对数学思想方法有了更系统和更全面的认识。知道了什么是数学思想,什么是数学方法,知道了数学思想与数学方法的内在联系与区别。知道数学思想是数学方法进一步提炼和概括,数学思想的抽象概括程度要高一些,而数学方法的操作性更强一些。人们实现数学思想往往要靠一定的数学方法,而人们选择的数学方法,又要以一定的数学思想为依据。由此可见,数学思想方法是数学的灵魂,那么,要想学好数学,用好数学,就要深入到数学的“灵魂深处”。
数学思想方法如此重要,从这本书中还知道了教师如何进行数学思想方法的教学:
1、重视思想方法目标的落实。
教师在备课撰写教学设计时,把数学思想方法作为与知识技能同等地位的目标呈现出来。而不是可有可无或者总是进行渗透,并利用动词进行描述和评价,使数学思想方法的教学目标落到实处。
2、在知识形成过程中体现数学思想方法。
现在的数学课堂教学中,很多教师精讲多练,急于把概念、公式、法则等知识传授给学生,然后按照考试的要求进行训练,轻视了知识的形成过程。这样,既浪费了时间,又没有真正培养学生的思维能力、思想方法和学习兴趣,导致很多学生害怕数学。我曾经在讲《除法的初步认识—平均分》时,通过让学生动手操作引导他们经历知识的形成过程。读过这本书才知道自己忽略了数学思想方法的渗透,在这个教学过程中,教师可以引导学生感受从直观操作的具体情境中抽象出除法概念的抽象思想,认识用除法符号表达的具有简洁性的符号化思想,体会用实物、图形帮助理解除法的具有直观性的数形结合思想,知道除法是一种重要的模型思想,体会在除法中商随着被除数、除数的变化而变化的函数思想。当学生认识了除法,在以后的学习中再通过学习有余数的除法、笔算除法等知识逐步加深对除法的理解,会更有利于分数、比、百分数等知识的学习,体会数学本质的变中有不变的思想。
同样,在计算教学中,如果我们教师只是简单地告诉学生计算法则,让学生停留在对知识的记忆、模仿的水平上,没有真正理解其中的数学方法,即算理,就无法再计算下去了。更谈不上思想方法的提升了。这样的教与学势必将走入一条“死胡同”。培养出来的学生只能是“知识型”、记忆型“的人才,同时,也束缚了”创造型、开拓型“人才的成长。
所以,在知识形成过程中体现数学思想方法的教学,才算是有效教学。
3、在知识的应用过程中体现数学思想方法。
以植树问题为例,可以封闭圆圈植树问题为核心模型,再演变出其他模型。封闭圆圈植树中的点与间隔一一对应,长度÷间隔=棵数。再根据实际情况演变出其他模型:一端栽一端不栽(长度÷间隔=棵数)、两端都栽(长度÷间隔+1=棵数)、两端都不栽(长度÷间隔-1=棵数)。充分发挥模型思想解决问题时的作用。
4、应在整理和复习、总复习中体现数学思想方法。
每个单元后的整理和复习、全册书后的总复习,不是简单的复习知识、巩固技能,更是思想方法的总结和提升。当小学生进入六年级,尤其是最后的复习阶段,更应该对小学数学的知识进行系统的、结构化的梳理,在思想方法上进行提升。
5、知道应潜移默化、明确呈现、长期坚持。
数学教学,重要的是提高学生的思维品质。数学思想的渗透,应该是长期的,应从小学一年级开始,正如”随风潜入夜,润物细无声“。数学思想方法的教学也应该想春雨一样,不断地滋润学生的心田。
读完这本书收获很多,对数学思想方法有了系统、全面的认识,在以后的数学思想方法教学中有了可以随时查询的资料,对于数学教学给予了更清晰、明了的指导。
文档为doc格式