小学数学教案

时间:2025-04-19 11:27:46
关于小学数学教案范文合集6篇

关于小学数学教案范文合集6篇

作为一位优秀的人民教师,通常会被要求编写教案,教案是保证教学取得成功、提高教学质量的基本条件。优秀的教案都具备一些什么特点呢?下面是小编帮大家整理的小学数学教案6篇,仅供参考,大家一起来看看吧。

小学数学教案 篇1

教学目标

1.使学生在理解的基础上认识归一应用题的结构特点,能正确地分析归一应用题的数量关系,掌握这类应用题的解答规律;学会列综合算式解答归一应用题.

2.培养学生学会有条理有根据的进行思考,提高分析、解答实际问题的能力.

3.使学生感受数学与生活的密切联系,激发学习兴趣;训练学生养成认真审题、动脑分析、仔细检验的好习惯.

教学重点

使学生了解归一应用题的基本结构和数量关系,会解答此类应用题.

教学难点

线段图的画法及检验方法.

教学过程

一、联系生活,激趣引入.

(课前,可以布置任务:让学生调查各自所用的学习用品的价钱)

1.教师:我想买些学习用品做奖品,但是不知道哪种好,价钱又合适.正好同学们做了调查,谁愿意介绍一下.

学生介绍,如:这种钢笔很好用,每支8元.

师问:我要卖6支,需要多少钱?用到了我们学过的哪一数量关系?

列式:8×6=48(元)单价×数量=总价

2.教师:刚才我看到××的铅笔很好看,他告诉我买这3支铅笔共花了4元5角,我想买这样的10支,要花多少钱呢?

此时,学生可能会答出也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师则问:要想知道10支这样的铅笔要花多少钱,就要先求出什么?(单价)

根据哪一数量关系求单价?(总价 ÷ 数量 = 单价)

3.教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.

二、尝试讨论,学习新知.

1.出示例3:学校买3个书架,一共用75元.照这样计算,买5个要用多少元?

(1)请学生自由出声读题,找出已知条件和问题

(2)小组讨论:尝试用线段图表示题目的条件和问题并分析题里的数量关系.

(3)教师提问:“照这样计算”是什么意思?按照题目的意思应该先算什么?再算什么?

(4)各组汇报,全班重点围绕“线段图的画法”、“照这样计算”的含义展开讨论:

“照这样计算”即按照3个书架是75元这样的单价去计算5个书架的价钱.每个书架就是75÷3=25(元),

(5)按照刚才的思路解题.

a.每个书架多少元?

75 ÷ 3 = 25(元)

b.买5个要用多少元?

25 × 5 = 125(元)

教师让学生独立列出综合算式并订正:75÷3×5

教师提问:这道题怎样检验?请检验这道题.

教师指名完整地说说这道题的解题思路.

引导学生思考:如果把第三个条件改为“ 6个、9个、 12个”,问题不变,仍求要用多少元?怎样列式?为什么?

2.将第三个条件改为“200元”,问题改为“可以买多少个书架?”成为例4.

出示例4:学校买了3个书架,一共用7 5元.照这样计算,200元可以买多少个书架?

让学生独立画线段图,理解题意.

重点讨论:线段图应该怎样改?这道题要先求什么?

③学生独立解题. a.每个书架多少元?

75÷3=25(元)

b.200元可以买多少个书架?

200÷25=8(个)

④共同讨论:怎样列综合算式?为什么要给75+3加上小括号?

200 ÷(75 ÷ 3)

⑤教师提问:这道题怎样检验?

⑥引导学生说说自己的解题思路是什么?改为“400元”、“800元”、“1000元”,问题不变,应该怎样列式?

3.请同学们自己试做下面两道题.

①一辆汽车2小时行70千米.照这样计算,7小时行多少千米?

②一台磨面机5小时磨小麦250千克.照这样计算,磨1750千克小麦,需要几小时?

订正:

①a.每小时行多少千米?

70 ÷ 2 = 35(千米)

b.7小时行多少千米?

35 × 7 = 245(千米) 70 ÷ 2 × 7

②a.每小时磨小麦多少千克?

250 ÷ 5 = 50(千克)

b.磨1750千克小麦需要几小时?

1750 ÷ 50 = 35(时) 1750 ÷(250 ÷ 5)

请学生分别说说各题的解题思路是什么?

教师提问:比较例3、例4和试做(3),每两道题之间的相同地方是什么?不同地方是什么?解题思路上有什么相同地方?

使学生明确:从应用题的结构上看,前两个条件相同(给出了总数量和份数),都有“照这样计算”的语句,第三个条件和问题不同.从解题思路上看,第一步都要求出单位数量(即每份数是多少、单价、速度等),教师点题,出示课题:归一应用题.

三、巩固练习,发展思维.

1.独立分析题目的条件和问题,找出先求什么,再列综合算式.

①小林看一本故事书,3天看了24页.照这样计算,7天可以看多少页?

②小林看一本故事书,3天看了24页.照这样计算,全书128页,多少天可以看完?

2.在正确的算式后面画“√”,并说出为什么.

①小明5分钟走300米,照这样的.速度,他家离学校720米,要走多少分钟?

A.300 ÷ 5 × 720 B.720 ÷(300 ÷ 5)

C.720 ÷ 5 ÷ 300 D.720 ÷ 300 ÷ 5

②小明5分钟走300米,照这样的速度,他从家到学校要走 15分钟,他家离学校有多少米?

A.300 × 5 × 15 B.300 ×(15 ÷ 5) C.300 ÷ 5 × 15

(3)用不同的方法解答下面的应用题.

某食堂4天用大米800千克,照这样计算,1600千克大米够吃几天?

四、课堂小结,质疑问难.

这节课学习的是什么?应用题的结构有什么特点?(先求出一份数是多少)解题的思路是什么?解题时应该注意什么问题?同学们还有不明白的问题吗?

五、布置作业.

1.三年级同学在校办工厂劳动,5个同学糊了35个纸盒.照这样计算,12个同学一共可以糊多少个纸盒?

2.三年级同学在校办工厂劳动,5个同学 ……此处隐藏4452个字……笔。教者借助统计图中平均数与其他数据的比较,形象地表示出极端数据与其他数据之间的差距,学生强烈地感受到:在一组个数不多的数据中,如果出现了极端数据,这时用平均数作为这组数据的代表已经不太合适,需要选用新的数据代表,从而激起学生寻找新的数据代表的心理需求。

4.你能从中选择一个数据来代表这7位老师跳绳的普遍水平吗?

学生充分地自主寻找,讨论交流,并说出想法。在有一些学生认为应选择102时,教者借助课件的动态演示,引导学生观察。

统计图中120周围的数据集中情况,再观察102周围的数据集中情况,并回答以下问题:

(1)在与平均数120上下相差5下范围内(115-125)的数据一共有多少个?(无)在与102上下相差5下范围内(97-107)的数据一共有多少个?(4个)

(2)在与平均数120上下相差10下范围内(110-130)的数据一共有多少个?(无)在与102上下相差10下范围内(92-112)的数据一共有多少个?(6个)

学生发现:102正好是这组数据中正中间的一个,比它大的有3个,比它小的也有3个。大部分学生觉得这时用102更能代表这7位老师跳绳的普遍水平。

教者鼓励学生试着给这个数起名,并说说想法。

5.揭示概念:一组个数不多的数据,如果它们的平均数受极端数据影响较大时,要用一种新的数来代表这组数据的整体特征。在把这些数据按大小顺序排列后,位于正中间的数就是这组数据的中位数。(板书课题)

6.教师移动板贴,交换102和93的位置,让93位于正中间,问:现在的中位数是93吗?

教者运用变式练习,让学生悟出在找中位数时,先要把一组数据按大小顺序排列,然后再找正中间的一个数。

7.现在用李老师的成绩107与中位数102比,你们觉得李老师的成绩怎样?(中等偏上)说明用中位数作为这组数据的代表既符合实际,又便于比较和判断。

8.如果杨老师跳得更多,是258下或288下,其他老师的成绩不变,这时平均数会变吗?中位数会变吗?引导学生推想,逐步感悟到平均数会受极端数据的影响,而中位数不会。

[评析]教者放手让学生独立思考,自主探索,合作交流,充分经历寻找新的数据代表的过程,从中感悟中位数的意义。特别是教者借助统计图进行直观形象的分析,分别在平均数和中位数上下浮动,让学生充分比较平均数和中位数代表性的强弱,通过对比促其逐步体会到在数据个数不多时,平均数受极端数据的影响较大,而中位数不受,且在中位数周围集中了很多的数据,这时选用中位数作为一组数据的代表更合适些。教者还把李老师的成绩与中位数相比,使学生初步领悟到中位数的作用,获得认知平衡。他们还感受到进行数据分析的价值和乐趣。

二、在自主寻找中体会中位数

1.如果赵老师也参加了此次跳绳比赛,他跳了98下,这时你会找下列这组数据的中位数吗?教者板贴增加一个数98。

学生先自主寻找,再讨论交流并比较合理性,最后创造出中位数:在把8个数据按大小顺序排列后,用正中间的两个数的平均数作为这组数据的中位数。即中位数是:(100+102)2=101。

2.找出下列每组数据的中位数。

(1)35、24、25、17、19

(2)39、19、29、25、2l、1l

学生自主寻找并交流,从而归纳出找奇数个、偶数个数据的中位数的方法。

3.现在你能说说怎样的数是中位数吗?

[评析]教者再次设计认知冲突,巧妙地将数据从7个增加到8个,激发学生进一步探索的'欲望,促其积极思考,主动创造。学生主动运用刚获得的对中位数的认识解决问题,经历了再创造的过程,从中学会找中位数的方法,体会到中位数的意义,建立新的认知平衡。

三、在实际运用中领悟中位数

1.出示练一练:下面是第一小组9位同学家庭的住房面积。(单位:平方米)

86、84、50、92、87、80、83、43、88

(1)这组数据的平均数和中位数各是多少?

(2)用哪个数据代表这9位同学家庭的住房情况比较合适?

(3)为什么这9个家庭住房面积的平均数比中位数低得多?

教师引导学生逐步解决上述问题。在回答问题(2)时,还特意选择其中的83或80与中位数进行比较,从而让学生体会到这里选用中位数做代表是合理的、有价值的。在回答问题(3)时,顺势说明这里的43与50对平均数也产生了较大的影响,也是极端数据。

2.出示李华同学5次数学测试的成绩:

前四次分别是96分、99分、95分、92分,第五次他带病考试,结果只考了58分。

(1)他5次考试的平均数和中位数各是多少?

(2)这时用哪个数据代表他的数学成绩比较合适?为什么?

(3)如果他第五次考了91分,这时用哪个数据代表他的数学成绩比较合适?为什么?

在回答问题(3)时,教者借助计算平均数和课件动态演示平均数的产生过程移多补少,引导学生感悟 到:如果一组数据未出现极端数据,当平均数与中位数又比较接近时,这时既可以用中位数,又可以用平均数作为这组数据的代表。相比之下,中位数只是其中的一个数据,而平均数集中了5次成绩,因而更精确些。

3.张强同学参加跳远比赛,预、决赛中共跳了6次,成绩如下表:(表中的表示犯规,无成绩)

你知道裁判用哪个数据代表张强的比赛成绩吗?

引导学生结合实际说明,这里既不选中位数,也不选平均数,而选最好成绩4.4。

[评析]教者有目的地选择一些具体数据,不断地让学生把平均数与中位数进行比较,引导学生多次经历寻找数据代表的过程,在解决实际问题的过程中,进一步明确各个统计量的意义和作用,感悟到它们之间的联系与区别,逐步体会到要根据数据的特点,具体地分析数据,灵活地选择数据代表;要根据不同的需要,选择合适的数据代表,做到具体数据具体分析,具体问题具体对待,不形成思维定势。

四、在拓展延伸中深化中位数

1.中国篮球明星姚明身高2.26米。假如他站在10名中国成年男子中,会对他们的平均身高产生较大的影响吗?(会)这时用哪个数代表这11名男子身高的普遍状况比较合适?(中位数)假如他站在一百名、一千名中国成年男子中,会对他们的平均身高产生较大的影响吗?(影响逐渐减小,直至无)这时用中位数作为这组数据的代表合适吗?应选用哪个数作为这些数据的代表更合适些?

2.学生说说中位数的意义、找法和作用,谈谈感受。

教者全课小结。(略)

[评析]为打破思维定势,发展数学思维,教者又一次设计了认知冲突,激起学生深入探究的兴趣,促使学生辩证地看待极端数据和中位数,合理地寻找数据代表。教者运用极限思想,引导学生逐步类比联想到:在数据个数很多时,极端数据对平均数的影响已不大,这时用中位数作为一组数据的代表已不太合适,而用平均数就比较精确和合适,从而使学生在更高层次上建立了认知平衡。

《关于小学数学教案范文合集6篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式